FIA
VOLUME/Biomass/Carbon Study
Status and Plans

James A. Westfall
OVERVIEW

- Cooperators/Technical assistance
 - University of Maine
 - Virginia Tech
 - Oregon State University
 - Michigan State University
 - University of Montana
 - University of Georgia
 - N. Arizona University
 - Industry: NCASI, Rayonier, Potlatch, Weyerhaeuser
 - Wood Properties: SRS RWU-4704, Forest Products Lab
 - Forest Management Service Center
 - FIA – PNW, IW, NRS, SRS
DATA COLLECTION

- Ongoing data collection
 - 2018 Western species felled-tree effort
 - Spatial and tree size gaps
- Felled-tree samples through 2017 = 3,070
- Legacy data (legacytreedata.org)
 - Volume = 237,721
 - Biomass = 16,896
 - Volume and biomass = 13,301
- Other non-public data
 - Industry studies
 - ENFOR biomass and taper (Canada)
Research accomplishments

- ~ 40 publications (30+ peer-reviewed journal)
- ~ 60 presentations
- Sampling Gaps (NRS-GTR)
- 2017 FIA Stakeholder Science Meeting Session
 - Development and evaluation of multi-species, cross-regional stem taper and bark thickness equations for predicting total and merchantable volume across the United States.
 - Modifying the component ratio method: Implications for carbon sequestration in Eastern U.S. forests.
 - Systems of component biomass equations for 7 important conifer species of the Inland Northwest, USA.
CURRENT WORK

- Unified database
 - Combines all data sources into a single dataset
 - Nationally-consistent database across all cooperators
 - Provides testing ground for various modeling approaches and comparisons among them

- Tree components and modeling approaches
 - Variable vs Fixed biomass component definitions
 - Modeling approaches
 - Predict total volume of main stem – convert to mass.
 - Taper model to volume to mass
 - Cumulative volume to cumulative mass
 - Predict total volume (no-taper) then predict mass
 - Use ratios etc... to get key sub-components desired by FIA.
 - Predict total stem mass directly (derive volume if desired)
 - Recover important sub-components of main stem mass (or volume)
FUTURE

- **Continue development and evaluation of modeling framework(s) that meets FIA and clients needs.**
 - Evaluate pro/cons and performance
 - Narrow the field of options
 - Pursue completion of biomass prediction system for national FIA implementation (~2020)

<table>
<thead>
<tr>
<th>Task</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring</td>
<td>Summer</td>
<td>Fall</td>
</tr>
<tr>
<td>Field data collection</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Modeling methods</td>
<td>Comparison</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Finalizing</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Model impact assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tech Transfer to FIA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Spring**
- **Summer**
- **Fall**